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Abstract. There exist a number of typical and interesting systems and/or models, which possess three-
generator Lie-algebraic structure, in atomic physics, quantum optics, nuclear physics and laser physics.
The well-known fact that all simple 3-generator algebras are either isomorphic to the algebra sl(2, C) or
to one of its real forms enables us to treat these time-dependent quantum systems in a unified way. By
making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transforma-
tion formulation, the present paper obtains exact solutions of the time-dependent Schrödinger equations
governing various three-generator Lie-algebraic quantum systems. For some quantum systems whose time-
dependent Hamiltonians have no quasialgebraic structures, it is shown that the exact solutions can also
be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved
generator (i.e., the time-independent invariant that commutes with the time-dependent Hamiltonian). The
topological property of geometric phase factors and its adiabatic limit in time-dependent systems is briefly
discussed.

PACS. 03.65.-w Quantum mechanics – 03.65.Fd Algebraic methods – 42.50.Gy Strong-field excitation of
optical transitions in quantum systems; multi-photon processes; dynamic Stark shift

1 Introduction

Exact solutions and geometric phase factor [1–4] of time-
dependent spin model have been extensively investigated
by many authors [5–9]. Bouchiat and Gibbons discussed
the geometric phase for the spin-1 system [6]. Datta et al.
found the exact solution for the spin- 1

2 system [7] by means
of the classical Lewis-Riesenfeld theory, and Mizrahi calcu-
lated the Aharonov-Anandan phase for the spin-1

2 system
[8] in a time-dependent magnetic field. The more system-
atic approach to obtaining the formally exact solutions for
the spin-j system was proposed by Gao et al. [9] who made
use of the Lewis-Riesenfeld quantum theory [10]. In this
spin-j system, the three Lie-algebraic generators of the
Hamiltonian satisfy the commutation relations of SU(2)
Lie algebra. In addition to the spin model, there exist
many quantum systems whose Hamiltonian is also con-
structed in terms of three generators of various Lie alge-
bras, which we will illustrate in the following.

The invariant theory that can be applied to solutions
of the time-dependent Schrödinger equation was first pro-
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posed by Lewis and Riesenfeld in 1969 [10]. This the-
ory is appropriate for treating the geometric phase fac-
tor. In 1991, Gao et al. generalized this theory and put
forward the invariant-related unitary transformation for-
mulation [11]. Exact solutions for time-dependent sys-
tems obtained by using the generalized invariant the-
ory contain both the geometric phase and the dynamical
phase [12–14]. This formulation was developed from the
Lewis-Riesenfeld’s formal theory and proven useful to the
treatment of the exact solutions of the time-dependent
Schrödinger equation and geometric phase factor. In the
present paper, based on these invariant theories we ob-
tain exact solutions of various time-dependent quantum
systems with the three-generator Lie-algebraic structures.

This paper is organized as follows: in Section 2, we
set out several quantum systems and models to illustrate
the fact that many quantum systems and models possess
three-generator Lie-algebraic structures; in Section 3, use
is made of the invariant theories and exact solutions of var-
ious time-dependent three-generator systems are therefore
obtained; in Section 4, there are some discussions concern-
ing the closure property of the Lie-algebraic generators in
the sub-Hilbert-space. In Section 5, we conclude this paper
with some remarks.
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2 The algebraic structures of various
three-generator quantum systems

In our previous work [15] we have shown that the
time-dependent Schrödinger equation is solvable if its
Hamiltonian is constructed in terms of the generators of a
certain Lie algebra. This, therefore, implies that analyzing
the algebraic structures of Hamiltonians plays significant
role in obtaining exact solutions of time-dependent sys-
tems. To the best of our knowledge, a large number of
quantum systems, which have three-generator Hamilto-
nians, have been considered in literature. Most of them,
however, are considered only in time-independent cases,
where the coefficients of the Hamiltonians are indepen-
dent of time. In the present paper, we try to obtain the
complete set of exact solutions of all these quantum sys-
tems in the time-dependent cases. In what follows we set
out these systems and discuss the algebraic structures of
their Hamiltonians.

2.1 Spin model

The time evolution of the wavefunction of a spinning par-
ticle in a magnetic field was studied by regarding it as a
spin model [8] whose Hamiltonian can be written

H(t) = c0

{1
2

sin θ exp[−iϕ]J+

+
1
2

sin θ exp[iϕ]J− + cos θJ3

}
(1)

with J± = J1 ± iJ2 satisfying the commutation rela-
tions [J3, J±] = ±J±, [J+, J−] = 2J3. Analogous to this
case, in the gravitational theory of general relativity the
Hamiltonians of both the spin-gravitomagnetic interac-
tion [16] and the spin-rotation coupling [15,17,18] can
be constructed in terms of J+, J−, and J3. This, there-
fore, means that these interactions can be described by
the spin model. It can be verified that the investigation
of the propagation of a photon inside the noncoplanarly
curved optical fiber [19–21] is also equivalent to that of a
spin model. The Hamiltonian of spin model is composed of
three generators which constitute the SU(2) Lie algebra.

2.2 Two-coupled harmonic oscillator

The Hamiltonian of the two-coupled harmonic oscillator,
which can describe the interaction of laser field with heat
reservoirs [22], is of the form (in the unit � = 1)

H = ω1a
†
1a1 + ω2a

†
2a2 + ga†

1a2 + g∗a†
2a1, (2)

where a†
1, a

†
2, a1, a2 are the creation and annihilation op-

erators for these two harmonic oscillators, respectively;
g and g∗ are the coupling coefficients and g∗ denotes
the complex conjugation of g. Set J+ = a†

1a2, J− =
a†
2a1, J3 = 1

2 (a†
1a1 − a†

2a2), N = 1
2 (a†

1a1 + a†
2a2), and

then one may show that the generators of this Hamilto-
nian represent the generators of the SU(2) subalgebra in
the Weyl-Heisenberg algebra. Since N commutes with H ,
i.e., [N, H ] = 0, we consequently say N is an invariant
(namely, it is a conserved generator whose eigenvalue is
time-independent). In terms of J±, J3 and N, the Hamil-
tonian in the expression (2) can be rewritten as follows

H = ω1(N + J3) + ω2(N − J3) + gJ+ + g∗J−. (3)

Another interesting Hamiltonian of the two-coupled har-
monic oscillator is written in the form

H = ω1a
†
1a1 + ω2a

†
2a2 + ga1a2 + g∗a†

1a
†
2, (4)

which may describe the atomic dipole-dipole interaction
without the rotating wave approximation [23]. If we take
K+ = a†

1a
†
2, K− = a1a2, K3 = 1

2 (a1a
†
1 + a†

2a2), N =
1
2 (a†

1a1 − a†
2a2), then the generators of the SU(1, 1) group

are thus realized. The commutation relations are immedi-
ately inferred as

[K3, K±] = ±K±, [K+, K−] = −2K3. (5)

2.3 SU(1, 1) �s h(4) Lie-algebra system

A good number of quantum systems whose Hamiltonian
is some combinations of the generators of a Lie algebra,
e.g., SU(1, 1)�sh(4) (�sdenotes a semidirect sum) [24,25],
which is used to discuss both the non-Poissonian effects in
a laser-plasma scattering and the pulse propagation in a
free-electron laser [25]. The SU(1, 1)�sh(4) Hamiltonian is

H = AK3 + FK+ + F ∗K− + Ba† + B∗a + G, (6)

where a and a† are harmonic-oscillator annihilation and
creation operators, respectively.

2.4 General harmonic oscillator

The Hamiltonian of the general harmonic oscillator is
given by [11]

H =
1
2
[Xq2 + Y (qp + pq) + Zp2] + Fq, (7)

where the canonical coordinate q and the canonical mo-
mentum p satisfy the commutation relation [q, p] = i. The
following three-generator Lie algebra is easily derived[

q2, p2
]

= 2i(qp + pq),
[
i(qp + pq), q2

]
= 4q2,[

i(qp + pq), p2
]

= −4p2. (8)

2.5 Charged particle moving in a magnetic field

The motion of a particle with mass µ and charge e in a
homogeneous magnetic field B = (0, 0, B) is described by
the following Hamiltonian in the spherical coordinates

H = − 1
2µ

(
∂2

∂r2
+

2
r

∂

∂r
− 1

r2
L2

)
+

1
8
µω2r2 − ω

2
Lz (9)
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with ω = B/µ, where L2 and Lz respectively denote the
square and the third component of the angular momentum
operator of the particle moving in the magnetic field. Since
both Lz and L2 commute with H and thus they are called
invariants, only the operators associated with r should be
taken into consideration. We can show that if the following
operators are defined

K1 = µr2, K2 = − 1
µ

(
∂2

∂r2
+

2
r

∂

∂r
− 1

r2
L2

)
,

K3 = −2i
(

3
2

+ r
∂

∂r

)
, (10)

then K1, K2 and K3 form an algebra

[K1, K2] = 2iK3, [K3, K2] = 4iK2,

[K3, K1] = −4iK1. (11)

Apparently, H can be rewritten in terms of the generators
of this Lie algebra.

2.6 Two-level atomic coupling

The model under consideration is consisted of two-level
atom driven by the photons field [26]. The interaction part
of the Hamiltonian contains the transition operator |1〉 〈2|
and |2〉 〈1|, where |1〉 and |2〉 are the atomic operators of
the two-level atom. Simple calculation yields

[|1〉 〈1| − |2〉 〈2| , |1〉 〈2|] = 2 |1〉 〈2| ,
[|1〉 〈1| − |2〉 〈2| , |2〉 〈1|] = −2 |2〉 〈1| ,

[|1〉 〈2| , |2〉 〈1|] = |1〉 〈1| − |2〉 〈2| , (12)

which unfolds that the Hamiltonian contains a SU(2) al-
gebraic structure.

2.7 Supersymmetric Jaynes-Cummings model

In addition to the ordinary Jaynes-Cummings models [27],
there exists a two-level multiphoton Jaynes-Cummings
(TLMJC) model which possesses supersymmetric struc-
ture. In this generalization of the Jaynes-Cummings
model, the atomic transitions are mediated by k pho-
tons [28–30]. Singh has shown that this model can be used
to study multiple atom scattering of radiation and multi-
photon emission, absorption, and laser processes [31]. The
Hamiltonian of this model under the rotating wave ap-
proximation is given by

H(t) = ω(t)a†a+
ω0(t)

2
σz+g(t)(a†)kσ−+g∗(t)akσ+, (13)

where a† and a are the creation and annihilation opera-
tors for the electromagnetic field, and obey the commuta-
tion relation

[
a, a†] = 1; σ± and σz denote the two-level

atom operators which satisfy the commutation relation
[σz , σ±] = ±2σ±. We can verify that this model is solv-
able and the complete set of exact solutions can be found

by working in a sub-Hilbert-space corresponding to a par-
ticular eigenvalue of the supersymmetric generator N ′

N ′ =
(

ak(a†)k 0
0 (a†)kak

)
. (14)

It can be verified that N ′ commutes with the Hamiltonian
in (13), and N ′ is therefore called the time-independent
invariant. the commutation relations of its supersymmet-
ric Lie-algebraic structure are

[
Q†, Q

]
= λmσz, [N, Q] = Q,

[
N, Q†] = −Q†,

[Q, σz] = 2Q,
[
Q†, σz

]
= −2Q†, (15)

where

N = a†a +
k − 1

2
σz +

1
2
, Q = (a†)kσ−, Q† = akσ+,

(16)
and λm = (m + k)!/m! denotes the eigenvalue of the
time-independent invariant N ′ with the eigenvalue equa-
tion being

N ′
( |m〉
|m + k〉

)
= λm

( |m〉
|m + k〉

)
· (17)

By the aid of (15) and (16), the Hamiltonian (13) of this
supersymmetric Jaynes-Cummings model can be rewrit-
ten as

H(t) = ω(t)N +
ω(t) − δ(t)

2
σz + g(t)Q + g∗(t)Q† − ω(t)

2
.

(18)
with δ(t) = kω(t) − ω0(t).

Vogel and Welsch have studied the k-photon Jaynes-
Cummings model with coherent atomic preparation which
is time-independent [32]. In the framework of the formula-
tion presented in this paper, we can study the totally time-
dependent cases of work done by Vogel and Welsch [32].

2.8 Two-level atom interacting with a generalized
cavity

Consider the following Hamiltonian [33]

H = r(A0) + s(A0)σz + gA−σ+ + g∗A+σ− (19)

where r(A0) and s(A0) are well-defined real functions
of A0, and A0, A± satisfy the commutation relations
[A0, A±] = ±mA±[34]. One can show that this Hamil-
tonian possesses a three-generator algebraic structure.
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2.9 The interaction between a hydrogenlike atom
and an external magnetic field

This model is described by

H = αL · S + β(Lz + 2Sz)

= βLz +
(

1
2
αLz + β

)
σz +

1
2
α(L−σ+ + L+σ−) (20)

with L± = Lx ± iLy. It is evidently seen that this form of
Hamiltonian is analogous to that in (19).

2.10 Coupled two-photon lasers

The Hamiltonian of coupled two-photon lasers is in fact
the combination of the two Hamiltonians of the two-
coupled harmonic oscillator and general harmonic oscil-
lator. One can show that there exists a SU(2) algebraic
structure in this model [35].

From what has been discussed above we can draw a
conclusion that a number of typical and useful systems
and models in laser physics, atomic physics and quantum
optics can be attributed to various three-generator types.
Dattoli et al. have also studied the Lie-algebraic structures
and time evolutions of most of the above illustrative ex-
amples [36]. It should be noted that most of above systems
and models in literature were only considered in station-
ary cases where the coefficients of the Hamiltonians were
totally time-independent (or partly time-dependent). In
the present paper, we will further indicate that the anal-
ysis of the algebraic structures shows the solvability of
these quantum systems. In the meanwhile we give exact
solutions of the time-dependent Schrödinger equation of
all these systems and models where all the coefficients of
the Hamiltonians are time-dependent.

3 Exact solutions of time-dependent
Schrödinger equation

Time evolution of most above systems and models is gov-
erned by the Schrödinger equation

i
∂ |Ψ(t)〉s

∂t
= H(t) |Ψ(t)〉s , (21)

where the Hamiltonian is constructed by three generators
A, B and C and is often given as follows

H(t) = ω(t)

{
1
2

sin θ(t) exp[−iφ(t)]A

+
1
2

sin θ(t) exp[iφ(t)]B + cos θ(t)C

}
(22)

with A, B and C satisfying the general commutation rela-
tions of a Lie algebra

[A, B] = nC, [C, A] = mA, [C, B] = −mB, (23)

where m and n are the structure constants of this Lie al-
gebra. Here, for convenience, the Hamiltonians with the
three-generator Lie-algebraic structures is parameterized
to be expression (22) in terms of the parameters ω, θ
and φ. For instance, in model Hamiltonian (3), the Lie-
algebraic generators, A, B and C in expression (22), may
respectively stand for J+, J−, and Jz . Thus the parame-
ters ω, θ and φ may be determined by

g(t) =
1
2
ω(t) sin θ(t) exp[−iφ(t)],

g∗(t) =
1
2
ω(t) sin θ(t) exp[iφ(t)],

ω1(t) − ω2(t) = ω(t) cos θ(t), (24)

with ω(t) =
√

[ω1(t) − ω2(t)]
2 + 4g(t)g∗(t). The same pa-

rameterizing approach is also readily applied to the su-
persymmetric Jaynes-Cummings model Hamiltonian (18)
and all other three-generator Lie-algebraic quantum sys-
tems and models presented in this paper. Since all simple
3-generator algebras are either isomorphic to the algebra
sl(2, C) or to one of its real forms, we treat these time-
dependent quantum systems in a unified way. According
to the Lewis-Riesenfeld invariant theory, an operator I(t)
that agrees with the following invariant equation [10]

∂I(t)
∂t

+
1
i
[I(t), H(t)] = 0 (25)

is called an invariant whose eigenvalue is time-
independent, i.e.,

I(t) |λ, t〉I = λ |λ, t〉I ,
∂λ

∂t
= 0. (26)

It is seen from equation (25) that I(t) is the linear com-
bination of A, B and C and may be generally written

I(t) = y

{
1
2

sin a(t) exp[−ib(t)]A +
1
2

sina(t) exp[ib(t)]B
}

+ cos a(t)C, (27)

where the constant y will be determined below. It should
be pointed out that it is not the only way to construct the
invariants. Since the product of two invariants also sat-
isfies equation (25) [11], there are infinite invariants of a
time-dependent quantum system. But the form in equa-
tion (27) is the most convenient and useful one. Substitu-
tion of (27) into equation (25) yields

y exp(−ib)(ȧ cos a − iḃ sina) − imω[exp(−iφ) cos a sin θ

− y exp(−ib) sina cos θ] = 0,

ȧ +
ny

2
ω sin θ sin(b − φ) = 0. (28)

where dot denotes the time derivative. The time-
dependent parameters a and b are determined by these
two auxiliary equations.
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It is easy to verify that the particular solution |Ψ(t)〉s
of the Schrödinger equation can be expressed in terms of
the eigenstate |λ, t〉I of the invariant I(t), namely,

|Ψ(t)〉s = exp
[
1
i
ϕ(t)

]
|λ, t〉I (29)

with

ϕ(t) =
∫ t

0I

〈λ, t′| [H(t′) − i
∂

∂t′
] |λ, t′〉I dt′. (30)

The physical meanings of∫ t

0I

〈λ, t′|H(t′) |λ, t′〉I dt′

and ∫ t

0I

〈λ, t′| − i
∂

∂t′
|λ, t′〉I dt′

are dynamical and geometric phase, respectively.
Since the expression (29) is merely a formal solution

of the Schrödinger equation, it is of no use to investigate
the time evolution and geometric effects (topological and
global properties) of time-dependent quantum systems.
In order to get the explicit solutions we make use of the
invariant-related unitary transformation formulation [11],
which enables one to obtain the complete set of exact solu-
tions of the time-dependent Schrödinger equation (21). In
accordance with the invariant-related unitary transforma-
tion method, the time-dependent unitary transformation
operator is often of the form

V (t) = exp[β(t)A − β∗(t)B] (31)

with

β(t) = −a(t)
2

x exp[−ib(t)],

β∗(t) = −a(t)
2

x exp[ib(t)],

where the constant, x, will be determined below. By mak-
ing use of the Glauber formula, lengthy calculation yields

IV = V †(t)I(t)V (t)

=

{
y

2
exp(−ib) sina cos

[(mn

2

) 1
2

ax

]

− (mn
2 )

1
2

n
exp(−ib) cos a sin

[(mn

2

) 1
2

ax

] }
A

+

{
y

2
exp(ib) sin a cos

[(mn

2

) 1
2

ax

]

− (mn
2 )

1
2

n
exp(ib) cos a sin

[
(
mn

2
)

1
2 ax

] }
B

+

{
cos a cos

[
(
mn

2
)

1
2 ax

]
+

(
mn
2

) 1
2

m
y

× sina sin
[(mn

2

) 1
2

ax

] }
C. (32)

It can be easily seen that when y and x are taken to be

y =
m

(mn
2 )

1
2
, x =

1
(mn

2 )
1
2
, (33)

one may derive that IV = C, which is time-independent.
Thus the eigenvalue equation of the time-independent in-
variant IV may be written in the form

IV |λ〉 = λ |λ〉 , |λ〉 = V †(t) |λ, t〉I . (34)

Under the transformation V (t), the Hamiltonian H(t) can
be changed into

HV (t) = V †(t)H(t)V (t) − V †(t)i
∂V (t)

∂t

= {ω[cos a cos θ +
(mn

2 )
1
2

m
sina sin θ cos(b − φ)]

+
ḃ

m
(1 − cos a)}C (35)

by the aid of Baker-Campbell-Hausdorff formula [37]

V †(t)
∂

∂t
V (t) =

∂

∂t
L +

1
2!

[
∂

∂t
L, L

]
+

1
3!

[[
∂

∂t
L, L

]
, L

]

+
1
4!

[[[
∂

∂t
L, L

]
, L

]
, L

]
+ · · · (36)

with V (t) = exp[L(t)]. Hence, with the help of equa-
tions (29, 34), the particular solution of the Schrödinger
equation is obtained

|Ψ(t)〉s = exp
[
1
i
ϕ(t)

]
V (t) |λ〉 (37)

with the phase

ϕ(t) =
∫ t

0

〈λ|
[
V †(t′)H(t′)V (t′) − V †(t′)i

∂

∂t′
V (t′)

]
|λ〉dt′

= ϕd(t) + ϕg(t)

= λ

∫ t

0

{
ω

[
cos a cos θ+

(mn
2 )

1
2

m
sin a sin θ cos(b − φ)

]

+
ḃ

m
(1 − cos a)

}
dt′, (38)

where the dynamical phase is

ϕd(t) = λ

∫ t

0

ω [cos a cos θ

+
(
mn

2
)

1
2

m
sin a sin θ cos(b − φ)

]
dt′

and the geometric phase is

ϕg(t) = λ

∫ t

0

ḃ

m
(1 − cos a)dt′.
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It is seen that the former phase is related to the coefficients
of the Hamiltonian such as ω, cos θ, sin θ, etc., whereas the
latter is not immediately related to these coefficients. If
the parameter a is taken to be time-independent,

ϕg(T ) = λ

∫ T

0

ḃ

m
(1 − cos a)dt′ =

λ

m
[2π(1 − cos a)]

where 2π(1 − cos a) is an expression for the solid angle
over the parameter space of the invariant. It is of interest
that (λ/m)[2π(1−cos a)] is equal to the magnetic flux pro-
duced by a magnetic monopole (and the gravitomagnetic
monopole) of strength λ/4πm existing at the origin of the
parameter space [38]. This, therefore, implies that geomet-
ric phase differs from dynamical phase and it involves the
global and topological properties of the time evolution of
a quantum system. This fact indicates the geometric and
topological meaning of ϕg(t).

Here we briefly concern ourselves with the model
Hamiltonians such as (3) and (4) with the conserved gen-
erator (i.e., the time-independent invariant of which the
eigenvalue is time-independent). For the model Hamilto-
nian (3), it can be rewritten as follows

H(t) = g(t)J+ + g∗(t)J− + [ω1(t) − ω2(t)] J3

+ [ω1(t) + ω2(t)] N (39)

with N = (a†
1a1 + a†

2a2)/2 being the time-independent in-
variant that satisfies the commutation relation [N, H(t)] =
0 (i.e., N commutes with the time-dependent Hamiltonian
H(t)). Since N is an invariant, the eigenvalue of N may
be (n1 + n2)/2, where n1 and n2 denote the eigenvalue
of a†

1a1 and a†
2a2, respectively. In Section 4, we will show

that a generalized quasialgebra can be found by working
in a sub-Hilbert-space corresponding to a particular eigen-
value, (n1 + n2)/2, of the time-independent invariant N ,
where N can be replaced with the particular eigenvalue,
(n1 + n2)/2, in the Lie-algebraic commutation relations.
We thus rewrite the model Hamiltonian (3) as follows

H(t) = g(t)J+ + g∗(t)J− + [ω1(t) − ω2(t)] J3

+
1
2

(n1 + n2) [ω1(t) + ω2(t)] . (40)

It is easily seen that this form of Hamiltonian in the sub-
Hilbert-space is different from that in (22) only by a time-
dependent c-numbers (n1 + n2)[ω1(t) + ω2(t)]/2, which
contributes only a time-dependent dynamic phase factor
expressed by exp{∫ t

0
1
2 (n1 + n2)[ω1(t′) + ω2(t′)]dt′} to

the particular solution of the time-dependent Schrödinger
equation. So, the method presented above can be readily
applied to the model Hamiltonian (3). In the same fashion,
the model Hamiltonian (4) can be rewritten

H(t) = g(t)K− + g∗(t)K+ + [ω1(t) + ω2(t)] K3

+ [ω1(t) − ω2(t)] N − 1
2

[ω1(t) + ω2(t)] (41)

with N = (a†
1a1 − a†

2a2)/2 being the time-independent in-
variant that commutes with this time-dependent Hamil-
tonian H(t) (41). Since N is an invariant, in the sub-
Hilbert-space corresponding to the particular eigenvalue,
(n1 − n2)/2, of N , the Hamiltonian (4) may be rewritten
as follows

H(t) = g(t)K− + g∗(t)K+ + [ω1(t) + ω2(t)] K3

+
1
2

(n1 − n2) [ω1(t) − ω2(t)] − 1
2

[ω1(t) + ω2(t)] , (42)

which differs from the Hamiltonian (22) only by a c-
numbers (n1−n2)[ω1(t)−ω2(t)]/2− [ω1(t)+ω2(t)]/2 that
also contributes only a time-dependent dynamic phase
factor to the particular solution of the time-dependent
Schrödinger equation. Hence we can obtain the solutions
of this class of model with the conserved generator (i.e.,
the time-independent invariant) by working in a sub-
Hilbert-space corresponding to a particular eigenvalue of
the time-independent invariant. Maamache informed us
of that he had obtained the exact solutions of these two
quantum models [39] also by using the invariant formu-
lation. But there is no so-called conserved generator in
Maamache’s model Hamiltonians. It is verified that when
the general results equations (37, 38) (deducting the dy-
namic phase factor associated with the conserved gen-
erators) are applied to these two model, the solutions
obtained are in complete agreement with Maamache’s re-
sults. The more complicated cases such as the supersym-
metric Jaynes-Cummings model whose Hamiltonian pos-
sesses the conserved generator are discussed in more detail
in the next section.

To conclude this section, we briefly discuss the con-
cepts of the exact solution and the explicit solution. The
expression (37) is a particular exact solution correspond-
ing to the eigenvalue λ of the invariant, and the general
solutions of the time-dependent Schrödinger equation are
therefore easily obtained by using the linear combinations
of all these particular solutions. Generally speaking, in
Quantum Mechanics, solution with chronological-product
operator (time-order operator) P is often called the for-
mal solution. In the present paper, however, the solution
of the Schrödinger equation governing a time-dependent
system is sometimes called the explicit solution, for rea-
sons that the solution does not involve time-order opera-
tor. But, on the other hand, by using the Lewis-Riesenfeld
invariant theory, there always exist some time-dependent
parameters, e.g., a(t) and b(t) in this paper which are de-
termined by the auxiliary equations (28). According to
the traditional practice, when employed in experimental
analysis and compared with experimental results, these
nonlinear auxiliary equations should be solved often by
means of numerical calculation. From above viewpoints,
the concept of explicit solution is understood in a rela-
tive sense, namely, it can be considered the explicit so-
lution when compared with the time-evolution operator
U(t) = P exp[(1/i)

∫ t

0 H(t′)dt′] involving the time-order
operator, P ; whereas, it cannot be considered completely
the explicit solution for it is expressed in terms of some
time-dependent parameters, which should be obtained
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via the auxiliary equations. Hence, conservatively speak-
ing, the solution of the time-dependent system presented
in the paper is often regarded as the exact solution rather
than the explicit solution.

4 Exact solutions obtained
in the sub-Hilbert-space

In the previous section, we obtain exact solutions of some
time-dependent three-generator systems and models pos-
sessing the three-generator Lie-algebraic structures by us-
ing these invariant theories. However, there exists a prob-
lem of the closure property of the Lie-algebraic generators
in the sub-Hilbert-space, which will be further discussed
in what follows.

The generalized invariant theory can only be applied
to the treatment of the system for which there exists the
quasialgebra defined in reference [8]. Unfortunately, it is
seen from (19) and (20) that there is no such quasial-
gebra in the Hamiltonians of example (7) (i.e., the su-
persymmetric Jaynes-Cummings model) and example (8)
(i.e., the two-level atom interacting with a generalized cav-
ity). In order to solve these two models, we generalize
the method that has been used for finding the dynamical
algebra O(4) of the hydrogen atom to treat the Hamil-
tonians of these time-dependent models. In the case of
hydrogen, the dynamical algebra O(4) was found by work-
ing in the sub-Hilbert-space corresponding to a particular
eigenvalue of the Hamiltonian [40]. In this paper, we will
show that a generalized quasialgebra can also be found by
working in a sub-Hilbert-space corresponding to a partic-
ular eigenvalue of the operator ∆ = A0 + m(1 + σz)/2 in
the time-dependent model of two-level atom interacting
with a generalized cavity. This generalized quasialgebra
enables one to obtain the complete set of exact solutions
for the Schrödinger equation. It is readily verified that the
operator ∆ commutes with H(t) and is therefore a time-
independent invariant according to equation (25). In order
to unfold the algebraic structure of the Hamiltonian (19),
the following three operators are defined [33]

Σ1 =
1

2[χ(∆)]
1
2
(A−σ+ + A+σ−),

Σ2 =
i

2[χ(∆)]
1
2
(A+σ− − A−σ+),

Σ3 =
1
2
σz , (43)

where χ = 〈n|A+A− |n〉 , |n〉 denotes the eigenstates of
A0. It is easy to see all these operators commute with ∆
and the quasialgebra {H, Σ1, Σ2, Σ3} is thus found. This
type of time-dependent models is therefore proved solvable
by working in a sub-Hilbert-space corresponding to the
eigenstates of the time-independent invariants.

As an illustrative example, we consider the supersym-
metric multiphoton Jaynes-Cummings model by means of
the invariant theories in the sub-Hilbert-space. In accor-

dance with the Lewis-Riesenfeld invariant theory, the in-
variant I(t) is often of the form

I(t) = c(t)Q† + c∗(t)Q + b(t)σz (44)

where c∗(t) is the complex conjugation of c(t), and b(t)
is real. Substitution of the expressions (44, 18) for I(t)
and H(t) into equation (26) leads to the following set of
auxiliary equations

ċ − 1
i
[cδ + 2bg] = 0, ċ∗ +

1
i
[c∗δ + 2bg∗] = 0,

.

b +
1
i
λm(c∗g − cg∗) = 0, (45)

where dot denotes the time derivative. The three time-
dependent parameters c, c∗ and b in I(t) are determined
by these three auxiliary equations.

This time-dependent model can be exactly solved by
using the invariant-related unitary transformation formu-
lation where the unitary transformation operator is of the
form

V (t) = exp
[
β(t)Q − β∗(t)Q†] . (46)

with β∗(t) being the complex conjugation of β(t). With
the help of the commutation relations (15), it can be found
that, by the complicated and lengthy computations, if β(t)
and β∗(t) satisfy the following equations

sin(4ββ∗λm)
1
2 =

λm(cβ∗ + c∗β)
(4ββ∗λm)

1
2

,

cos(4ββ∗λm)
1
2 = b, (47)

then a time-independent invariant can be obtained as
follows

IV ≡ V †(t)I(t)V (t) = σz. (48)

For convenience, we substitute the time-dependent param-
eters θ and φ for c, c∗ and b in I(t) with the help of equa-
tion (47), and the results are

β = −
θ
2 exp(−iφ)

λ
1
2
m

, β∗ = −
θ
2 exp(iφ)

λ
1
2
m

,

c = − sin θ exp(−iφ)

λ
1
2
m

, c∗ = − sin θ exp(iφ)

λ
1
2
m

· (49)

Thus, the invariant I(t) in (44) can be rewritten

I(t) = − sin θ

λ
1
2
m

[
exp(−iφ)Q + exp(iφ)Q†] + cos θσz . (50)

In the meanwhile, under the unitary transformation (46),
the Hamiltonian (18) can be transformed into

HV (t) ≡ V †(t)H(t)V (t) − V †(t)i
∂

∂t
V (t)

= ωN − ω

2
+ {ω

2
(1 − cos θ) − 1

2
λ

1
2
m[g exp(iφ)

+g∗ exp(−iφ)] sin θ +
ω − δ

2
cos θ

− φ̇

2
(1 − cos θ)}σz . (51)
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The eigenstates of σz corresponding to the eigenvalue
σ = +1 and σ = −1 are

(
1
0

)
and

(
0
1

)
, and the eigenstate

of N ′ is
( |m〉
|m+k〉

)
in terms of (17). It follows from equa-

tions (35, 37, 38) that two particular solutions of the time-
dependent Schrödinger equation of the time-dependent
TLMJC model are of the form

|Ψm,σ=+1(t)〉 = exp
{

1
i

∫ t

0

[ϕ̇d,σ=+1(t′) + ϕ̇g,σ=+1(t′)]dt′
}

× V (t)
(|m〉

0

)
(52)

with

ϕ̇d,σ=+1(t′) =
(

m +
k

2

)
ω(t′) − 1

2
λ

1
2
m{g(t′) exp[iφ(t′)]

+g∗(t′) exp[−iφ(t′)]} sin θ(t′)

−δ(t′)
2

cos θ(t′) (53)

and

ϕ̇g,σ=+1(t′) = − φ̇(t′)
2

[1 − cos θ(t′)] ; (54)

and

|Ψm,σ=−1(t)〉 = exp
{

1
i

∫ t

0

[ϕ̇d,σ=−1(t′) + ϕ̇g,σ=−1(t′)]dt′
}

× V (t)
(

0
|m + k〉

)
(55)

with

ϕ̇d,σ=−1(t′) =
(

m +
k

2

)
ω(t′) +

1
2
λ

1
2
m{g(t′) exp[iφ(t′)]

+ g∗(t′) exp[−iφ(t′)]} sin θ(t′) +
δ(t′)

2
cos θ(t′) (56)

and

ϕ̇g,σ=−1(t′) =
φ̇(t′)

2
[1 − cos θ(t′)] . (57)

It should be noted that the above approach to the time-
dependent Jaynes-Cummings model is also appropriate for
treating the periodic decay and revival of some multipho-
ton transitions models, which has been investigated by
Sukumar and Buck [29].

It is readily verified that the Hamiltonians of the
original two-level Jaynes-Cummings model (mono-photon
case) [27] and the three-level two-mode mono-photon
model possess the SU(2) and SU(3) Lie-algebraic struc-
ture, respectively, in the sub-Hilbert-space correspond-
ing to a particular eigenvalue of the conserved gener-
ator (the time-independent invariant). It follows from
equations (52–57) that the solution of the time-dependent
case of SU(2) Jaynes-Cummings model is easily obtained
by taking k = 1, where k denotes the number of pho-
tons mediating in the process of atomic transitions. Since

Shumovsky et al. have considered the three-level two-
mode multiphoton Jaynes-Cummings model [41] whose
Hamiltonian is time-independent, we think it is also of in-
terest to exactly solve the time-dependent supersymmet-
ric three-level two-mode multiphoton Jaynes-Cummings
model by means of these invariant theories.

5 Concluding remarks

(1) On the basis of the fact that all simple three-generator
algebras are either isomorphic to the algebra sl(2, C) or to
one of its real forms, exact solutions of the time-dependent
Schrödinger equation of all three-generator systems and
models in quantum optics, nuclear physics, solid state
physics, molecular and atomic physics as well as laser
physics are provided by making use of both the Lewis-
Riesenfeld invariant theory and the invariant-related uni-
tary transformation formulation. We uses the unitary
transformation and obtain the explicit expression for the
time-evolution operator, instead of the formal solution
that is related to the chronological product.

(2) Since it appears only in systems with time-
dependent Hamiltonian, the geometric phase factor would
be easily studied if the exact solutions of time-dependent
systems had been obtained. In the adiabatic limit, i.e.,
if the parameter a is taken to be time-independent, then
the geometric phase in a cycle associated with b(t) can be
rewritten as ϕg(T ) = (λ/m)[2π(1 − cos a)], where 2π(1 −
cos a) is an expression for the solid angle over the parame-
ter space of the invariant. It is well known that this phase
is just the Berry’s adiabatic geometric phase (i.e., Berry’s
non-integral phase), which is found by Berry in the quan-
tum adiabatic process in 1984 [1]. In this paper, however,
we obtain the non-adiabatic non-cyclic geometric phase in
time-dependent quantum systems; Berry’s phase is there-
fore only the particular case of ours presented in this
paper. In view of above discussions, the invariant-
related unitary transformation formulation is a useful tool
for treating the geometric phase factor and the time-
dependent Schrödinger equation. This formulation re-
places the eigenstates of the time-dependent invariants
with those of the time-independent invariants through the
unitary transformation and thus obtain the explicit solu-
tions, rather than the formal solutions associated with the
chronological product, of time-dependent quantum sys-
tems.

(3) It is known that the time-dependent Schrödinger
equation can be solved if its Hamiltonian is constructed
in terms of the generators of a certain Lie algebra. For
some quantum systems whose time-dependent Hamilto-
nians possess no quasialgebraic structures, we show that
the exact solutions can also be obtained by working in a
sub-Hilbert-space corresponding to a particular eigenvalue
of the conserved generator (i.e., the time-independent in-
variant that commutes with the time-dependent Hamil-
tonian). In Section 4, we obtain the complete set of
exact solutions of the time-dependent supersymmetric
multiphoton Jaynes-Cummings model in the sub-Hilbert-
space corresponding to the time-independent invariant N ′.
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Apparently, the method presented in this paper is also ap-
plicable to the algebraic structure whose number of gener-
ators is more than three. Additionally, it should be pointed
out that the time-dependent Schrödinger equation is often
considered in literature, whereas less attention is paid to
the time-dependent Klein-Gordon equation. Since it can
govern the time evolution of some scalar fields, we think
that it gets less attentions than it deserves. Work in this
direction is under consideration and will be published else-
where.

This project is supported in part by the National Natural Sci-
ence Foundation of China under the project No. 90101024 and
30000034. The authors thank Xiao-Chun Gao for helpful pro-
posals concerning the Lie-algebraic generators in sub-Hilbert-
space.

Note added in proof

The expression for geometric phase is analogous to the
gravitomagnetic vector potential [38] of a hypothetical
gravitomagnetic monopole. Thus, a scalar particle moving
in a gravitomagnetic field of gravitomagnetic monopole
may give rise to an Aharonov-Carni phase that is in exact
analogy with the Berry’s phase, which a spinning particle
will also acquire due to the time-dependent spin-rotation
coupling in a non-inertial frame of reference. This geomet-
ric phase (so-called spin-rotation geometric phase) itself
appears to possess much physical significance and deserves
investigations in more detail.
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